Prof. Dr. Manfred Lein PD Dr. Michael Flohr

VOLLSTÄNDIGE ELEKTRODYNAMIK

In der Vorlesung wurden nun alle Grundlagen der vollständigen Theorie des elektromagnetischen Feldes formuliert.

[P29] Lorenz-Eichung

Eine weitere wichtige Eichung ist die Lorenz-Eichung, zu der wir hier ein paar Überlegungen anstellen.

(a) Leiten Sie aus den Maxwell-Gleichungen die Kontinuitätsgleichung ab,

$$\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0.$$

(b) Zeigen Sie nun, dass es immer möglich ist, das Vektorpotential \vec{A} und das elektrische Potential Φ durch Eichung so zu wählen, dass gilt:

$$\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0.$$

Beachten Sie die formale Ähnlichkeit zur Kontinuitätsgleichung.

- (c) Welche Eichtransformationen sind möglich, so dass die Lorenz-Eichung erhalten bleibt?
- (d) In der sogenannten Strahlungseichung fordert man $\Phi=0$ und $\nabla\cdot\vec{A}=0$. Ist somit auch die Lorenz-Bedingung erfüllt? Ist so eine Eichung möglich?

[P30] Elektromagnetische Wellen

Wir betrachten als Lösung der Maxwell-Gleichungen im Vakuum die Superposition von zwei ebenen, linear polarisierten elektromagnetischen Wellen. Beide haben die gleiche elektrische Feldamplitude $\vec{E}_0 = E_0 \vec{e}_x$, aber sie haben entgegengesetzte Ausbreitungsrichtungen mit Wellenvektoren $\vec{k} = k \vec{e}_z$ und $-\vec{k} = -k\vec{e}_z.$

- (a) Geben Sie das elektrische Feld $\vec{E}(\vec{r},t)$ und die magnetische Flussdichte $\vec{B}(\vec{r},t)$ an.
- (b) Berechnen Sie die Energiedichte und die Energiestromdichte als Funktion von Ort und Zeit.
- (c) Zu welchen Zeiten t_i verschwindet die Energiestromdichte?
- (d) Wählen Sie eine solche Zeit t_j und tragen für die Zeit $t=t_j+\frac{\pi}{4ck}$ das \vec{E} -Feld und die Energiestromdichte als Funktion von z auf. Hinweis: Es gibt jeweils nur eine einzige nichtverschwindende Komponente.